Theor Chim Acta (1986) 70: 115-117

Approximate upper bounds to the momentum expectation value ratios $\langle p^2 \rangle / \langle p^{-1} \rangle$ and $\langle p \rangle / \langle p^{-1} \rangle$ in atoms

S. Nath, K. Shobha, and K. D. Sen

School of Chemistry, University of Hyderabad, Hyderabad 500134, India

(Received November 15, 1985/Accepted March 11, 1986)

Within an isoelectronic series of atoms, reasonably tight upper bounds on the ratios of the momentum expectation values $\langle p^2 \rangle / \langle p^{-1} \rangle$ and $\langle p \rangle / \langle p^{-1} \rangle$ respectively have been derived for the first time by using the Dresher's inequality.

Key words: Momentum density — Density functional

The *n*th moment of momentum, $\langle p^n \rangle$, represents a valuable parameter in the theory of electronic structure of atoms, molecules and solids. Through the radial momentum density, I(p), the *n*th moment is related to the three dimensional momentum density, $\bar{\rho}(p)$, according to the following equations [1]

$$\langle p^n \rangle = \int_0^\infty dp \, p^n I(p) \tag{1}$$

$$I(p) = \int_0^{2\pi} d\phi_p \int_0^{\pi} d\theta_p p^2 \sin \theta_p \bar{\rho}(p)$$
(2)

It can be shown, using the definition of the isotropic Compton profile, J(q),

$$J(q) = \frac{1}{2} \int_{|q|}^{\infty} dp \, p^{-1} I(p)$$
(3)

that $\langle p^{-1} \rangle$ is just twice the peak height, J(0) of the Compton profile. The quantity $\langle p \rangle$ has been related [2] to the exchange energy of electrons in atoms within the

free electron approximation. The electronic kinetic energy is well known to be given by $\langle p^2 \rangle / 2$ [3].

The purpose of this communication is to show that the representations of $\langle p^{-1} \rangle$, $\langle p \rangle$ and $\langle p^2 \rangle$ in terms of the spherically symmetric single particle density $\rho(r)$ as given by

$$\langle p^{-1} \rangle = \frac{1}{2} \left(\frac{3}{\pi} \right)^{2/3} \int \rho(r)^{2/3} d\tau$$
 (4)

$$\langle p \rangle = \pi \left[\frac{3}{4} \left(\frac{3}{\pi} \right)^{1/3} \int \rho(r)^{4/3} \right] d\tau$$
⁽⁵⁾

and

- · -

$$\langle p^2 \rangle = \frac{3}{5} (3\pi^2)^{2/3} \int \rho(r)^{5/3} d\tau$$
 (6)

respectively, can be used to obtain the upper bounds to the ratios $\langle p^2 \rangle / \langle p^{-1} \rangle$ and $\langle p \rangle / \langle p^{-1} \rangle$ within an isoelectronic series of atoms.

Denoting the three consecutive members in a given isoelectronic series with atomic numbers Z, Z+1, and Z+2 as A, B, and C respectively we propose that

$$\langle p^2 \rangle_{\rm B} / \langle p^{-1} \rangle_{\rm B} \leq \frac{1}{2} [\langle p^2 \rangle_{\rm A} / \langle p^{-1} \rangle_{\rm A} + \langle p^2 \rangle_{\rm C} / \langle p^{-1} \rangle_{\rm C}]$$
⁽⁷⁾

and

$$[\langle p \rangle_{\mathrm{B}} / \langle p^{-1} \rangle_{\mathrm{B}}]^{3/2} \leq \frac{1}{2} [(\langle p \rangle_{\mathrm{A}} / \langle p^{-1} \rangle_{\mathrm{A}})^{3/2} + (\langle p \rangle_{\mathrm{C}} / \langle p^{-1} \rangle_{\mathrm{C}})^{3/2}]$$

$$\tag{8}$$

The proposed bounds can be obtained from the Dreshers' inequality [4]

$$\left(\frac{\int |f+g|^p dT}{\int |f+g|^r dT}\right)^{1/(p-r)} \leq \left(\frac{\int f^p dT}{\int f^r dT}\right)^{1/(p-r)} + \left(\frac{\int g^p dT}{\int g^r dT}\right)^{1/(p-r)}$$
(9)

valid for $p \ge 1 \ge r \ge 0$, $f, g \ge 0$. The choice of $p = \frac{5}{3}$, $r = \frac{2}{3}$, $f = \rho_A$ and $g = \rho_C$ and the approximation [6] $\rho_A + \rho_C = 2\rho_B$ in Eq. (9) leads to Eq. (7). Similarly, Eq. (8) can be obtained from Eq. (9) using the value of $p = \frac{4}{3}$ and the other quantities remaining the same as given above.

In Table 1 we have presented the results of the numerical tests of Eq. (7) and Eq. (8) on the Be-Ne, Ar and Kr isoelectronic series respectively. The momentum expectation values $\langle p^2 \rangle$, $\langle p \rangle$ and $\langle p^{-1} \rangle$ have been taken from a recent compilation [5] based on the analytic Hartree-Fock wave functions [6]. It is remarkable to find that the quantities $\langle p^2 \rangle / \langle p^{-1} \rangle$ and $[\langle p \rangle / \langle p^{-1} \rangle]^{3/2}$ respectively for a given member B within an isoelectronic series of atoms are bounded from above by the arithmatic mean of the same quantities corresponding to the two adjacent neighbours A and C respectively. Equations (7)-(8) can be used to obtain bounds on multinegative ions within a given iso-electronic series.

Atom	$[\langle p^2 \rangle / \langle p^{-1} \rangle]$ HF \le Eq. (7)		$[\langle p \rangle / \langle p^{-1} \rangle]^{3/2}$ HF \le Eq. (8)	
	Be	4.61	6.19	1.28
_B ⁺	11.342		3.48	
В-	5.55		1.40	
B ⁻ C N ⁺	15.06		3.98	4,78
_N ⁺	24.57		8.16	
C- N O ⁺	9.63		2.66	
Ν	19.44	21.64	6.19	7.13
0+	33.65		11.60	
'N-	14.55		4.19	
0	26.95	29.31	8.83	9.88
F^+	44.07		15.5	
F-	28.91	9.09		
Ne	47.12	49.84	16.39	17.68
Na ⁺	70.77		26.26	
C1-	76.40		17.61	
Ar	104.03	105.88	25.92	26.64
K ⁺	135.37		35.67	
Br [_]	312.92		66.35	
Kr	380.14	380.62	85.73	86.09
_Rb ⁺	448.33		105.86	

Table 1. Numerical tests of Eqs. (7) and (8) for the iso-electronic series of atoms containing 4, 6, 7, 8, 10, 18 and 36 electrons respectively

References

- 1. Williams BG (1977) Compton scattering. McGraw-Hill, New York
- 2. Pathak RK, Gadre SR (1981) J Chem Phys 74:5925
- 3. March NH (1983) J Chem Phys 79:3404
- 4. Beckenbach EF, Bellman R (1971) Inequalities. Springer, Berlin Heidelberg New York
- 5. Gadre SR, Gejji SP, Chakravorty SJ (1983) Atomic data and nuclear data tables 28:477
- 6. Clementi E, Roetti C (1974) Atomic data and nuclear data tables 14:197